BEDNARSKA On lifts of projectable - projectable classical linear connections to the cotangent bundle

نویسندگان

  • ANNA BEDNARSKA
  • A. Bednarska
چکیده

We describe all FMm1,m2,n1,n2 -natural operators D : Qproj-proj QT ∗ transforming projectable-projectable classical torsion-free linear connections ∇ on fibred-fibred manifolds Y into classical linear connections D(∇) on cotangent bundles T ∗Y of Y . We show that this problem can be reduced to finding FMm1,m2,n1,n2 -natural operators D : Qproj-proj (T ∗,⊗pT ∗⊗⊗qT ) for p = 2, q = 1 and p = 3, q = 0. 1. Basic definitions and examples. A fibred-fibred manifold Y is any commutative diagram

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrangians and Euler morphisms on fibered - fibered frame bundles from projectable - projectable classical linear connections

We classify all FMm1,m2,n1,n2 -natural operators A transforming projectable-projectable torsion-free classical linear connections ∇ on fibered-fibered manifolds Y of dimension (m1,m2, n1, n2) into rth order Lagrangians A(∇) on the fibered-fibered linear frame bundle L(Y ) on Y . Moreover, we classify all FMm1,m2,n1,n2 -natural operators B transforming projectable-projectable torsion-free classi...

متن کامل

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

On the geometry of fiber product preserving bundle functors1

Using the description of a fiber product preserving bundle functor F in terms of Weil algebras, we deduce several geometric properties of the Fprolongations of principal and associated bundles. Then we clarify that the flow prolongation with respect to F of a projectable vector field can be constructed by using a natural morphism.

متن کامل

Projectable Multivariate Wavelets: Separable vs Nonseparable

Tensor product (separable) multivariate (bi)orthogonal wavelets have been widely used in many applications. On the other hand, non-tensor product (nonseparable) wavelets have been extensively argued in the literature to have many advantages over separable wavelets, for example, more freedom in design of nonseparable wavelets (such design is typically much more complicated and di±cult than the a...

متن کامل

Projectable Multivariate Wavelets

We demonstrate that many multivariate wavelets are projectable wavelets; that is, they essentially carry the tensor product (separable) structure though themselves may be non-tensor product (nonseparable) wavelets. We show that a projectable wavelet can be replaced by a tensor product wavelet without loss of desirable properties such as spatial localization, smoothness and vanishing moments.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013